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It is proved that the differential equation

znw(n) + (a
(n−1)
1 z + a

(n−1)
2 )zn−1w(n−1) +

n−2∑
k=0

(a
(k)
n−1−kz

2 + a
(k)
n−kz + a

(k)
n+1−k)z

kw(k) = 0

has an entire solution f with a two-member recurrent formula for its Taylor’s coefficients. The

growth of such function f is studied. The conditions for coefficients a
(j)
k are obtained, under

which the solution f is convex or close-to-convex in D = {z : |z| < 1}.

Я. С. Магола. О целых решениях с двухчленной рекуррентной формулой для тейлоров-
ских коэффициентов линейных дифференциальных уравнений // Мат. Студiї. – 2011. –
Т.36, №2. – C.133–141.

Доказано, что дифференциальное уравнение

znw(n) + (a
(n−1)
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n−2∑
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(k)
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имеет целое решение f с двухчленной рекуррентной формулой для тейлоровских коэффи-
циентов. Изучен рост такой функции f . Указаны условия на параметры a

(j)
k , при выпол-

нении которых такое решение f является выпуклой или близкой к выпуклой в D = {z :
|z| < 1} функцией.

1. Introduction. A function

f(z) =
∞∑
n=0

fnz
n (1)

analytic and univalent in D = {z : |z| < 1} is said to be convex if f(D) is a convex domain. It
is well known [1, p. 38], that the condition Re{1+zf ′′(z)/f ′(z)} > 0 (z ∈ D) is necessary and
sufficient for convexity of f in D. A function f is said to be close-to-convex in D [1, p. 64] if
there exists a function Φ convex in D such that Re{f ′(z)/Φ′(z)} > 0 (z ∈ D). Every function
close-to-convex in D is univalent in D [1, p. 64] and f1 ̸= 0. A function f close-to-convex
in D has the characteristic property that the complement G of f(D) can be filled with rays
L which go from ∂f(D) and lie in G [1, p. 71]. Since f1 ̸= 0, it follows that the function (1) is
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close-to-convex in D if and only if the function f̃(z) = z+
∑∞

n=2 (fn/f1)z
n is close-to-convex

in D.
S. M. Shah [2, 3] studied properties of entire solutions of the differential equation

z2w′′ + (a
(1)
1 z2 + a

(1)
2 z)w′ + (a

(0)
1 z2 + a

(0)
2 z + a

(0)
3 )w = 0. (2)

In particular, he obtained [3] the conditions under which entire solutions with a one-member
recurrent formula for Taylor’s coefficients of differential equation (2) is a function close-to-
convex in D.

The general case of a two-member recurrent formula in a number of papers is investigated
by Z. M. Sheremeta [4–7] and M. M. Sheremeta with Z. M. Sheremeta [8]. Particularly, in
the case when the parameters a

(j)
k are complex, they have obtained the following result.

Theorem A. Let a
(1)
2 + a

(0)
3 = 0, |a(1)2 | < 2 and

2
|a(1)1 |+ |a(0)2 |
2− |a(1)2 |

+
3|a(0)1 |

2(3− |a(1)2 |)
+

6|a(1)1 |+ 3|a(0)2 |
4(3− |a(1)2 |)

+
2|a(0)1 |

3(4− |a(1)2 |)
< 1.

Then differential equation (2) has an entire solution f(z) = z+
∑∞

s=2 fsz
s which is a function

close-to-convex in D and ln Mf (r) = (1 + o(1))σr, r → ∞, where either

σ = σ1 :=
1

2

∣∣∣∣−a
(1)
1 +

√
(a

(1)
1 )2 − 4a

(0)
1

∣∣∣∣ ,
or

σ = σ2 :=
1

2

∣∣∣∣−a
(1)
1 −

√
(a

(1)
1 )2 − 4a

(0)
1

∣∣∣∣ .
The straightforward generalization of Shah’s equation is the differential equation

znw(n) +
n∑

j=1

(
j+1∑
k=1

a
(n−j)
k zn−k+1

)
w(n−j) = 0. (3)

The following theorem is proved in [9].

Theorem B. A function (1) analytic at the origin is a solution of differential equation (3)
if and only if for each s ∈ Z+

min{s,n}∑
m=0

min{s,n}−m∑
k=0

a
(k)
n+1−k−m

(s−m)!

(s− k −m)!
fs−m = 0, (4)

where a
(n)
1 = 1.

In the case when formula (4) reduces to a one-member recurrent formula for two nei-
ghboring coefficients fs in [9, 10] it is investigated convexity, close-to-convexity in D and
possible growth of a function f . In [11] it is studied the case of two non-neighboring coeffici-
ents fs. Here we consider the conditions under which the function f has the same properties
in the case when formula (4) reduces to a two-member recurrent formula for neighboring
coefficients. Further we assume that n ≥ 3.
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We may rewrite differential equation (3) in the form

n∑
m=0

n−m∑
k=0

a
(k)
n+1−k−mz

k+mw(k) = 0. (5)

Let a
(k)
n+1−k−m = 0 for m = 3, n and k = 0, n−m. Then differential equation (5) takes the

following form

n∑
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kw(k) +
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(k)
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that is
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(k)
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kw(k) = 0. (6)

Proposition 1. Let n ≥ 3. A function (1) analytic at the origin is a solution of differential
equation (6) if and only if

a
(0)
n+1f0 = 0, (a

(0)
n+1 + a(1)n )f1 + a(0)n f0 = 0 (7)

and for all s ≥ 2

min{s,n}∑
k=0

a
(k)
n+1−k

s!

(s− k)!
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k=0

a
(k)
n−k
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+
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a
(k)
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(s− 2)!

(s− k − 2)!
fs−2 = 0, (8)

where a
(n)
1 = 1.

Indeed, if s = 0 and s = 1 then from (4) we obtain (7). On the other hand, if s ≥ 2 then
from (4) in view of a(k)n+1−k−m = 0 for m = 3, n and k = 0, n−m we obtain (8).

Assuming that for all s ≥ 2

min{s,n}∑
k=0

a
(k)
n+1−k

s!

(s− k)!
̸= 0

we may rewrite recurrent formula (8) in the form
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(k)
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s
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that is
fs =

1

s
ξsfs−1 +

1

s(s− 1)
ηsfs−2, s ≥ 2, (9)
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where

ξs = −
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2. Close-to-convexity of a solution. For the investigation of the close-to-convexity for
a solution of differential equation (6) we use following lemma [8, 12].

Lemma 1. If
∞∑
s=2

s|fs| ≤ 1, then the function

f(z) = z +
∞∑
s=2

fsz
s (12)

is close-to-convex in D.

In view of this lemma, we search for a solution of differential equation (6) in the form
of (12). Suppose that a

(0)
n+1 + a

(1)
n = 0. Choosing f0 = 0 and f1 = 1, condition (7) holds. For

s ≥ 2 from recurrent formula (9) we obtain
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∣∣∣+ ∞∑
s=4

∣∣∣∣ ηs
s− 1

fs−2

∣∣∣∣ =
= |ξ2|+

∞∑
s=2

|ξs+1fs|+
∣∣∣η3
2

∣∣∣+ ∞∑
s=2

∣∣∣∣ ηs+2

s+ 1
fs

∣∣∣∣= ∞∑
s=2

s

∣∣∣∣ξs+1

s
fs

∣∣∣∣+ ∞∑
s=2

s

∣∣∣∣ ηs+2

s(s+ 1)
fs
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whence

∞∑
s=2

(
1− |ξs+1|

s
− |ηs+2|

s(s+ 1)

)
s |fs| ≤ |ξ2|+

∣∣∣η3
2

∣∣∣ . (13)

Now we put ξ∗ = max
{

|ξs+1|
s

; s ≥ 2
}

, η∗ = max
{

|ηs+2|
s(s+1)

; s ≥ 2
}

. The following theorem
is true.

Theorem 1. Let n ≥ 3 and a
(0)
n+1 + a

(1)
n = 0. If

ξ∗ + |ξ2|+ η∗ +
∣∣∣η3
2

∣∣∣ < 1, (14)

then entire solution (12) of differential equation (6) is close-to-convex in D.
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Proof. Indeed, (14) implies 1− ξ∗ − η∗ > 0 and so from (13) we obtain the inequality

(1− ξ∗ − η∗)
∞∑
s=2

s |fs| ≤ |ξ2|+
∣∣∣η3
2

∣∣∣ ,
whence in view of (14),

∑∞
s=2 s |fs| ≤ 1, i.e. by Lemma 1 the function f is close-to-convex

in D.

3. Convexity of a solution. For investigation of the convexity of a solution of differential
equation (6), as in [13], we use following lemma [12].

Lemma 2. If
∞∑
s=2

s2|fs| ≤ 1, then the function (12) is convex in D.

In view of this lemma we again search for a solution of differential equation (6) in the
form of (12). Suppose that a(0)n+1 + a

(1)
n = 0. Choosing f0 = 0 and f1 = 1, condition (7) holds.

For s ≥ 2 from recurrent formula (9) we obtain
∞∑
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s2 |fs| ≤
∞∑
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s
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2
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s
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s(s+ 1)
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≤
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s=2
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s
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2

∣∣∣∣ ηs+2
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whence
∞∑
s=2

(
1− 3

2

|ξs+1|
s

− 2
|ηs+2|

s(s+ 1)

)
s2 |fs| ≤ 2 |ξ2|+

3

2
|η3| . (15)

Define ξ∗ and η∗ as above. The following theorem is true.

Theorem 2. Let n ≥ 3 and a
(0)
n+1 + a

(1)
n = 0. If

3

2
ξ∗ + 2 |ξ2|+ 2η∗ +

3

2
|η3| < 1, (16)

then entire solution (12) of differential equation (6) is convex in D.

Proof. Indeed, (16) implies 1− 3ξ∗/2− 2η∗ > 0 and so from (15) we obtain the inequality(
1− 3

2
ξ∗ − 2η∗

) ∞∑
s=2

s2 |fs| ≤ 2 |ξ2|+
3

2
|η3| ,

whence, in view of (16),
∞∑
s=2

s2 |fs| ≤ 1, i.e. by Lemma 2, the function f is convex in D.
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4. Growth of a solution. For investigation of the growth for a solution of the differential
equation (6) we use Wiman-Valiron’s method. Let µf (r) be the maximal term of series (12)
and let νf (r) be its central index. Let ζ be a point on the circle {z : |z| = r} such that
|f(ζ)| = Mf (r) = max{|f(z)| : |z| = r}. Then [14, Ch. 1] the equality

f (j)(ζ) =

(
νf (r)

ζ

)j

f(ζ)(1 + δj(ζ)), j = 1, 2, ..., (17)

where δj(ζ) = O
(
νf (r)

−1/5
)
, holds as r → +∞ outside a set E ⊂ [1,+∞) of finite logari-

thmic measure, moreover this set E is contained in a union of intervals [σ′
n−1, σn) such that

σn/σ
′
n−1 → 1 as n → ∞ (see [14, Ch. 1]).

If f is a solution of differential equation (6) then in view of (17) we have the equality

ζn
(
νf (r)

ζ

)n

(1 + δn(ζ)) +
(
a
(n−1)
1 ζ + a

(n−1)
2

)
ζn−1

(
νf (r)

ζ

)n−1

(1 + δn−1(ζ))+

+
n−2∑
k=0

(
a
(k)
n−1−kζ

2 + a
(k)
n−kζ + a

(k)
n+1−k

)
ζk
(
νf (r)

ζ

)k

(1 + δk(ζ)) = 0, (18)

which in general is an equation of n-th order for finding νf (r). It is clear that asymptotic
behavior of νf (r) depends on vanishing of parameters a

(j)
k .

The following theorem is true.

Theorem 3. Let n ≥ 3 and |a(n−1)
1 | + |a(n−2)

1 | > 0. Then a transcendental solution (12) of
differential equation (6) has regular growth and

lim
r→+∞

lnMf (r)

r
= γ, (19)

where either γ = |γ1| or γ = |γ2|, and

γ1 =
−a

(n−1)
1 +

√(
a
(n−1)
1

)2
− 4a

(n−2)
1

2
, γ2 =

−a
(n−1)
1 −

√(
a
(n−1)
1

)2
− 4a

(n−2)
1

2
.

Proof. Firstly, suppose that a
(n−1)
1 ̸= 0 and a

(n−2)
1 ̸= 0. Then formula (18) yields

ζn
(
νf (r)

ζ

)n

(1 + o(1)) + a
(n−1)
1 ζn

(
νf (r)

ζ

)n−1

(1 + o(1))+

+a
(n−2)
1 ζn

(
νf (r)

ζ

)n−2

(1 + o(1)) +O
(
ζ2νn−3

f (r)
)
= 0, r → +∞, r ̸∈ E,

that is (
νf (r)

ζ

)2

+ (1 + o(1))a
(n−1)
1

νf (r)

ζ
+ (1 + o(1))a

(n−2)
1 = 0, r → +∞, r ̸∈ E,

whence it follows that either νf (r) = −(1 + o(1))γ1ζ or νf (r) = −(1 + o(1))γ2ζ as r → +∞
and r ̸∈ E.
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If a(n−2)
1 = 0, then from (18) likewise we obtain that νf (r)/ζ + (1 + o(1))a

(n−1)
1 = 0 i.e.

νf (r) = −(1 + o(1))a
(n−1)
1 ζ as r → +∞, r ̸∈ E. Finally, if a

(n−1)
1 = 0, then (18) implies

that (νf (r)/ζ)
2 + (1 + o(1))a

(n−2)
1 = 0, i.e. either νf (r) = (1 + o(1))

√
−a

(n−2)
1 ζ or νf (r) =

−(1 + o(1))

√
−a

(n−2)
1 ζ as r → +∞, r ̸∈ E.

So, in all three cases νf (r) = (1 + o(1))γr as r → +∞, r ̸∈ E, where either γ = |γ1| or
γ = |γ2|.

If r ∈ E i.e. r ∈ [σ′
n−1, σn) for some n ∈ N then

νf (r) ≥ νf (σ
′
n−1) = (1 + o(1))γσ′

n−1 = (1 + o(1))γ
σ′
n−1

σn

σn =

= (1 + o(1))γσn ≥ (1 + o(1))γr, r → +∞,

and

νf (r) ≤ νf (σn) = (1 + o(1))γσn = (1 + o(1))γ
σn

σ′
n−1

σ′
n−1 =

= (1 + o(1))γσ′
n−1 ≤ (1 + o(1))γr, r → +∞,

that is νf (r) = (1 + o(1))γr as r → +∞. Therefore,

ln µf (r) = ln µf (1) +

r∫
1

νf (t)

t
dt = (1 + o(1))γr, r → +∞,

and by Borel’ theorem ln Mf (r) = (1 + o(1)) ln µf (r) = (1 + o(1))γr as r → +∞.

5. The main theorem. Using Theorems 1–3 we prove the following theorem.

Theorem 4. Let a
(0)
n+1 = a

(1)
n = 0, a(2)n−1 > 0 and a

(k)
n+1−k ≥ 0 for k = 3, n, |a(k)n−k| ≤ κa(k+1)

n−k

for k = 0, n− 1 and |a(k)n−1−k| ≤ κa(k+2)
n−1−k for k = 0, n− 2, where κ ≡ const > 0. Then

differential equation (6) has an entire solution (12) such that:

1) if κ < 6/13 then f is close-to-convex in D;

2) if κ < 12/55 then f is convex in D;

3) if |a(n−1)
1 |+ |a(n−2)

1 | > 0 then equality (19) holds.

Proof. Since a
(0)
n+1 = a

(1)
n = 0, a(2)n−1 > 0 and a

(k)
n+1−k ≥ 0 for k = 3, n we obtain for all s ≥ 2

Bs =

min{s,n}∑
k=0

a
(k)
n+1−k

(s− k)!
> 0.

In view of (10) and (11) for s ≥ 2 we have

|ξs| ≤

min{s,n}−1∑
k=0

|a(k)n−k|
(s− k − 1)!

a
(0)
n+1

s!
+

min{s,n}∑
k=1

a
(k)
n+1−k

(s− k)!

=

min{s,n}−1∑
k=0

|a(k)n−k|
(s− k − 1)!

min{s,n}−1∑
k=0

a
(k+1)
n−k

(s− k − 1)!

≤ κ
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and

|ηs| ≤

min{s,n}−2∑
k=0

|a(k)n−1−k|
(s− k − 2)!

a
(0)
n+1

s!
+

a
(1)
n

(s− 1)!
+

min{s,n}∑
k=2

a
(k)
n+1−k

(s− k)!

=

min{s,n}−2∑
k=0

|a(k)n−1−k|
(s− k − 2)!

min{s,n}−2∑
k=0

a
(k+2)
n−1−k

(s− k − 2)!

≤ κ,

that is ξ∗ ≤ κ/2, η∗ ≤ κ/6 and since ξ2 ≤ κ and η3/2 ≤ κ/2 we have ξ∗+ |ξ2|+η∗+ |η3/2| ≤
13κ/6 < 1 provided κ < 6/13. Therefore, by Theorem 1, claim 1) of Theorem 4 is true.
Likewise from Theorem 2 we obtain claim 2), and Theorem 3 implies claim 3).

Since equality a
(0)
n+1 + a

(1)
n = 0 is one of the conditions of Theorems 1–2 we get

Bs =
a
(1)
n

(s− 1)!

s− 1

s
+

min{s,n}∑
k=2

a
(k)
n+1−k

(s− k)!
,

and if a(1)n > 0 and a
(k)
n+1−k ≥ 0 for k = 2, n then Bs ≥ 1

2
a
(1)
n

(s−1)!
+

min{s,n}∑
k=2

a
(k)
n+1−k

(s−k)!
. Therefore, the

conclusion of Theorem 4 remains true if a(0)n+1 + a
(1)
n = 0, a(1)n > 0, a(2)n−1 > 0 and a

(k)
n+1−k ≥ 0

for k = 3, n, |a(0)n | ≤ κa(1)n /2, |a(k)n−k| ≤ κa(k+1)
n−k for k = 1, n− 1 and |a(k)n−1−k| ≤ κa(k+2)

n−1−k for
k = 0, n− 2.

The author expresses his sincere thanks to Prof. M. M. Sheremeta for the attentive
guidance.
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