Ya. S. Mahola

ON ENTIRE SOLUTIONS WITH A TWO-MEMBER RECURRENT FORMULA FOR TAYLOR'S COEFFICIENTS OF LINEAR DIFFERENTIAL EQUATIONS

Ya. S. Mahola. On entire solutions with a two-member recurrent formula for Taylor's coefficients of linear differential equations, Mat. Stud. 36 (2011), 133-141.

It is proved that the differential equation

$$
z^{n} w^{(n)}+\left(a_{1}^{(n-1)} z+a_{2}^{(n-1)}\right) z^{n-1} w^{(n-1)}+\sum_{k=0}^{n-2}\left(a_{n-1-k}^{(k)} z^{2}+a_{n-k}^{(k)} z+a_{n+1-k}^{(k)}\right) z^{k} w^{(k)}=0
$$

has an entire solution f with a two-member recurrent formula for its Taylor's coefficients. The growth of such function f is studied. The conditions for coefficients $a_{k}^{(j)}$ are obtained, under which the solution f is convex or close-to-convex in $\mathbb{D}=\{z:|z|<1\}$.
Я. С. Магола. О целых решенилх с двухчленной рекуррентной формулой для тейлоровских коэффициентов линейных дифференииальных уравнений // Мат. Студії. - 2011. Т.36, №2. - С.133-141.

Доказано, что дифференциальное уравнение

$$
z^{n} w^{(n)}+\left(a_{1}^{(n-1)} z+a_{2}^{(n-1)}\right) z^{n-1} w^{(n-1)}+\sum_{k=0}^{n-2}\left(a_{n-1-k}^{(k)} z^{2}+a_{n-k}^{(k)} z+a_{n+1-k}^{(k)}\right) z^{k} w^{(k)}=0
$$

имеет целое решение f с двухчленной рекуррентной формулой для тейлоровских коэффициентов. Изучен рост такой функции f. Указаны условия на параметры $a_{k}^{(j)}$, при выполнении которых такое решение f является выпуклой или близкой к выпуклой в $\mathbb{D}=\{z$: $|z|<1\}$ функцией.

1. Introduction. A function

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} f_{n} z^{n} \tag{1}
\end{equation*}
$$

analytic and univalent in $\mathbb{D}=\{z:|z|<1\}$ is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known $\left[1\right.$, p. 38], that the condition $\operatorname{Re}\left\{1+z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0(z \in \mathbb{D})$ is necessary and sufficient for convexity of f in \mathbb{D}. A function f is said to be close-to-convex in $\mathbb{D}[1$, p. 64] if there exists a function Φ convex in \mathbb{D} such that $\operatorname{Re}\left\{f^{\prime}(z) / \Phi^{\prime}(z)\right\}>0(z \in \mathbb{D})$. Every function close-to-convex in \mathbb{D} is univalent in $\mathbb{D}[1$, p. 64$]$ and $f_{1} \neq 0$. A function f close-to-convex in \mathbb{D} has the characteristic property that the complement G of $f(\mathbb{D})$ can be filled with rays L which go from $\partial f(\mathbb{D})$ and lie in $G\left[1\right.$, p. 71]. Since $f_{1} \neq 0$, it follows that the function (1) is

2010 Mathematics Subject Classification: 30C45, 30D15.
Keywords: entire function, linear differential equations, convexity, close-to-convexity, regular growth.
close-to-convex in \mathbb{D} if and only if the function $\tilde{f}(z)=z+\sum_{n=2}^{\infty}\left(f_{n} / f_{1}\right) z^{n}$ is close-to-convex in \mathbb{D}.
S. M. Shah [2, 3] studied properties of entire solutions of the differential equation

$$
\begin{equation*}
z^{2} w^{\prime \prime}+\left(a_{1}^{(1)} z^{2}+a_{2}^{(1)} z\right) w^{\prime}+\left(a_{1}^{(0)} z^{2}+a_{2}^{(0)} z+a_{3}^{(0)}\right) w=0 \tag{2}
\end{equation*}
$$

In particular, he obtained [3] the conditions under which entire solutions with a one-member recurrent formula for Taylor's coefficients of differential equation (2) is a function close-toconvex in \mathbb{D}.

The general case of a two-member recurrent formula in a number of papers is investigated by Z. M. Sheremeta [4-7] and M. M. Sheremeta with Z. M. Sheremeta [8]. Particularly, in the case when the parameters $a_{k}^{(j)}$ are complex, they have obtained the following result.

Theorem A. Let $a_{2}^{(1)}+a_{3}^{(0)}=0,\left|a_{2}^{(1)}\right|<2$ and

$$
2 \frac{\left|a_{1}^{(1)}\right|+\left|a_{2}^{(0)}\right|}{2-\left|a_{2}^{(1)}\right|}+\frac{3\left|a_{1}^{(0)}\right|}{2\left(3-\left|a_{2}^{(1)}\right|\right)}+\frac{6\left|a_{1}^{(1)}\right|+3\left|a_{2}^{(0)}\right|}{4\left(3-\left|a_{2}^{(1)}\right|\right)}+\frac{2\left|a_{1}^{(0)}\right|}{3\left(4-\left|a_{2}^{(1)}\right|\right)}<1 .
$$

Then differential equation (2) has an entire solution $f(z)=z+\sum_{s=2}^{\infty} f_{s} z^{s}$ which is a function close-to-convex in \mathbb{D} and $\ln M_{f}(r)=(1+o(1)) \sigma r, r \rightarrow \infty$, where either

$$
\sigma=\sigma_{1}:=\frac{1}{2}\left|-a_{1}^{(1)}+\sqrt{\left(a_{1}^{(1)}\right)^{2}-4 a_{1}^{(0)}}\right|,
$$

or

$$
\sigma=\sigma_{2}:=\frac{1}{2}\left|-a_{1}^{(1)}-\sqrt{\left(a_{1}^{(1)}\right)^{2}-4 a_{1}^{(0)}}\right| .
$$

The straightforward generalization of Shah's equation is the differential equation

$$
\begin{equation*}
z^{n} w^{(n)}+\sum_{j=1}^{n}\left(\sum_{k=1}^{j+1} a_{k}^{(n-j)} z^{n-k+1}\right) w^{(n-j)}=0 \tag{3}
\end{equation*}
$$

The following theorem is proved in [9].
Theorem B. A function (1) analytic at the origin is a solution of differential equation (3) if and only if for each $s \in \mathbb{Z}_{+}$

$$
\begin{equation*}
\sum_{m=0}^{\min \{s, n\}} \sum_{k=0}^{\min \{s, n\}-m} a_{n+1-k-m}^{(k)} \frac{(s-m)!}{(s-k-m)!} f_{s-m}=0, \tag{4}
\end{equation*}
$$

where $a_{1}^{(n)}=1$.
In the case when formula (4) reduces to a one-member recurrent formula for two neighboring coefficients f_{s} in $[9,10]$ it is investigated convexity, close-to-convexity in \mathbb{D} and possible growth of a function f. In [11] it is studied the case of two non-neighboring coefficients f_{s}. Here we consider the conditions under which the function f has the same properties in the case when formula (4) reduces to a two-member recurrent formula for neighboring coefficients. Further we assume that $n \geq 3$.

We may rewrite differential equation (3) in the form

$$
\begin{equation*}
\sum_{m=0}^{n} \sum_{k=0}^{n-m} a_{n+1-k-m}^{(k)} z^{k+m} w^{(k)}=0 \tag{5}
\end{equation*}
$$

Let $a_{n+1-k-m}^{(k)}=0$ for $m=\overline{3, n}$ and $k=\overline{0, n-m}$. Then differential equation (5) takes the following form

$$
\sum_{k=0}^{n} a_{n+1-k}^{(k)} z^{k} w^{(k)}+\sum_{k=0}^{n-1} a_{n-k}^{(k)} z^{k+1} w^{(k)}+\sum_{k=0}^{n-2} a_{n-1-k}^{(k)} z^{k+2} w^{(k)}=0
$$

that is

$$
\begin{equation*}
z^{n} w^{(n)}+\left(a_{1}^{(n-1)} z+a_{2}^{(n-1)}\right) z^{n-1} w^{(n-1)}+\sum_{k=0}^{n-2}\left(a_{n-1-k}^{(k)} z^{2}+a_{n-k}^{(k)} z+a_{n+1-k}^{(k)}\right) z^{k} w^{(k)}=0 . \tag{6}
\end{equation*}
$$

Proposition 1. Let $n \geq 3$. A function (1) analytic at the origin is a solution of differential equation (6) if and only if

$$
\begin{equation*}
a_{n+1}^{(0)} f_{0}=0, \quad\left(a_{n+1}^{(0)}+a_{n}^{(1)}\right) f_{1}+a_{n}^{(0)} f_{0}=0 \tag{7}
\end{equation*}
$$

and for all $s \geq 2$

$$
\begin{align*}
& \sum_{k=0}^{\min \{s, n\}} a_{n+1-k}^{(k)} \frac{s!}{(s-k)!} f_{s}+\sum_{k=0}^{\min \{s, n\}-1} a_{n-k}^{(k)} \frac{(s-1)!}{(s-k-1)!} f_{s-1}+ \\
& \quad+\sum_{k=0}^{\min \{s, n\}-2} a_{n-1-k}^{(k)} \frac{(s-2)!}{(s-k-2)!} f_{s-2}=0 \tag{8}
\end{align*}
$$

where $a_{1}^{(n)}=1$.
Indeed, if $s=0$ and $s=1$ then from (4) we obtain (7). On the other hand, if $s \geq 2$ then from (4) in view of $a_{n+1-k-m}^{(k)}=0$ for $m=\overline{3, n}$ and $k=\overline{0, n-m}$ we obtain (8).

Assuming that for all $s \geq 2$

$$
\sum_{k=0}^{\min \{s, n\}} a_{n+1-k}^{(k)} \frac{s!}{(s-k)!} \neq 0
$$

we may rewrite recurrent formula (8) in the form

$$
f_{s}=-\frac{\sum_{k=0}^{\min \{s, n\}-1} \frac{a_{n-k}^{(k)}}{(s-k-1)!}}{s \sum_{k=0}^{\min \{s, n\}} \frac{a_{n+1-k}^{(k)}}{(s-k)!}} f_{s-1}-\frac{\sum_{k=0}^{\min \{s, n\}-2} \frac{a_{n-1-k}^{(k)}}{(s-k-2)!}}{s(s-1) \sum_{k=0}^{\min \{s, n\}} \frac{a_{n+1-k}^{(k)}}{(s-k)!}} f_{s-2},
$$

that is

$$
\begin{equation*}
f_{s}=\frac{1}{s} \xi_{s} f_{s-1}+\frac{1}{s(s-1)} \eta_{s} f_{s-2}, \quad s \geq 2, \tag{9}
\end{equation*}
$$

where

$$
\begin{gather*}
\xi_{s}=-\frac{\sum_{k=0}^{\min \{s, n\}-1} \frac{a_{n-k}^{(k)}}{(s-k-1)!}}{\sum_{k=0}^{\min \{s, n\}} \frac{a_{n+1-k}^{(k)}}{(s-k)!}}, \quad s \geq 2, \tag{10}\\
\eta_{s}=-\frac{\sum_{k=0}^{\min \{s, n\}-2} \frac{a_{n-1-k}^{(k)}}{(s-k-2)!}}{\sum_{k=0}^{\min \{s, n\}} \frac{a_{n+1-k}^{(k)}}{(s-k)!}}, \quad s \geq 2 . \tag{11}
\end{gather*}
$$

2. Close-to-convexity of a solution. For the investigation of the close-to-convexity for a solution of differential equation (6) we use following lemma [8, 12].
Lemma 1. If $\sum_{s=2}^{\infty} s\left|f_{s}\right| \leq 1$, then the function

$$
\begin{equation*}
f(z)=z+\sum_{s=2}^{\infty} f_{s} z^{s} \tag{12}
\end{equation*}
$$

is close-to-convex in \mathbb{D}.
In view of this lemma, we search for a solution of differential equation (6) in the form of (12). Suppose that $a_{n+1}^{(0)}+a_{n}^{(1)}=0$. Choosing $f_{0}=0$ and $f_{1}=1$, condition (7) holds. For $s \geq 2$ from recurrent formula (9) we obtain

$$
\begin{gathered}
\sum_{s=2}^{\infty} s\left|f_{s}\right|=\sum_{s=2}^{\infty} s\left|\frac{\xi_{s}}{s} f_{s-1}+\frac{\eta_{s}}{s(s-1)} f_{s-2}\right| \leq \sum_{s=2}^{\infty}\left|\xi_{s} f_{s-1}\right|+\sum_{s=2}^{\infty}\left|\frac{\eta_{s}}{s-1} f_{s-2}\right|= \\
=\left|\xi_{2} f_{1}\right|+\sum_{s=3}^{\infty}\left|\xi_{s} f_{s-1}\right|+\left|\eta_{2} f_{0}\right|+\left|\frac{\eta_{3}}{2} f_{1}\right|+\sum_{s=4}^{\infty}\left|\frac{\eta_{s}}{s-1} f_{s-2}\right|= \\
=\left|\xi_{2}\right|+\sum_{s=2}^{\infty}\left|\xi_{s+1} f_{s}\right|+\left|\frac{\eta_{3}}{2}\right|+\sum_{s=2}^{\infty}\left|\frac{\eta_{s+2}}{s+1} f_{s}\right|=\sum_{s=2}^{\infty} s\left|\frac{\xi_{s+1}}{s} f_{s}\right|+\sum_{s=2}^{\infty} s\left|\frac{\eta_{s+2}}{s(s+1)} f_{s}\right|+\left|\xi_{2}\right|+\left|\frac{\eta_{3}}{2}\right|,
\end{gathered}
$$

whence

$$
\begin{equation*}
\sum_{s=2}^{\infty}\left(1-\frac{\left|\xi_{s+1}\right|}{s}-\frac{\left|\eta_{s+2}\right|}{s(s+1)}\right) s\left|f_{s}\right| \leq\left|\xi_{2}\right|+\left|\frac{\eta_{3}}{2}\right| \tag{13}
\end{equation*}
$$

Now we put $\xi^{*}=\max \left\{\frac{\left|\xi_{s+1}\right|}{s} ; s \geq 2\right\}, \eta^{*}=\max \left\{\frac{\left|\eta_{s+2}\right|}{s(s+1)} ; s \geq 2\right\}$. The following theorem is true.
Theorem 1. Let $n \geq 3$ and $a_{n+1}^{(0)}+a_{n}^{(1)}=0$. If

$$
\begin{equation*}
\xi^{*}+\left|\xi_{2}\right|+\eta^{*}+\left|\frac{\eta_{3}}{2}\right|<1 \tag{14}
\end{equation*}
$$

then entire solution (12) of differential equation (6) is close-to-convex in \mathbb{D}.

Proof. Indeed, (14) implies $1-\xi^{*}-\eta^{*}>0$ and so from (13) we obtain the inequality

$$
\left(1-\xi^{*}-\eta^{*}\right) \sum_{s=2}^{\infty} s\left|f_{s}\right| \leq\left|\xi_{2}\right|+\left|\frac{\eta_{3}}{2}\right|
$$

whence in view of (14), $\sum_{s=2}^{\infty} s\left|f_{s}\right| \leq 1$, i.e. by Lemma 1 the function f is close-to-convex in \mathbb{D}.
3. Convexity of a solution. For investigation of the convexity of a solution of differential equation (6), as in [13], we use following lemma [12].
Lemma 2. If $\sum_{s=2}^{\infty} s^{2}\left|f_{s}\right| \leq 1$, then the function (12) is convex in \mathbb{D}.
In view of this lemma we again search for a solution of differential equation (6) in the form of (12). Suppose that $a_{n+1}^{(0)}+a_{n}^{(1)}=0$. Choosing $f_{0}=0$ and $f_{1}=1$, condition (7) holds. For $s \geq 2$ from recurrent formula (9) we obtain

$$
\begin{gathered}
\sum_{s=2}^{\infty} s^{2}\left|f_{s}\right| \leq \sum_{s=2}^{\infty} s\left|\xi_{s} f_{s-1}\right|+\sum_{s=2}^{\infty} s\left|\frac{\eta_{s}}{s-1} f_{s-2}\right|= \\
=2\left|\xi_{2} f_{1}\right|+\sum_{s=3}^{\infty} s\left|\xi_{s} f_{s-1}\right|+2\left|\eta_{2} f_{0}\right|+3\left|\frac{\eta_{3}}{2} f_{1}\right|+\sum_{s=4}^{\infty} s\left|\frac{\eta_{s}}{s-1} f_{s-2}\right|= \\
=2\left|\xi_{2}\right|+\sum_{s=2}^{\infty}(s+1)\left|\xi_{s+1} f_{s}\right|+\frac{3}{2}\left|\eta_{3}\right|+\sum_{s=2}^{\infty}(s+2)\left|\frac{\eta_{s+2}}{s+1} f_{s}\right|= \\
=2\left|\xi_{2}\right|+\sum_{s=2}^{\infty} \frac{s+1}{s}\left|\frac{\xi_{s+1}}{s}\right| s^{2}\left|f_{s}\right|+\frac{3}{2}\left|\eta_{3}\right|+\sum_{s=2}^{\infty} \frac{s+2}{s}\left|\frac{\eta_{s+2}}{s(s+1)}\right| s^{2}\left|f_{s}\right| \leq \\
\leq \sum_{s=2}^{\infty} \frac{3}{2}\left|\frac{\xi_{s+1}}{s}\right| s^{2}\left|f_{s}\right|+\sum_{s=2}^{\infty} 2\left|\frac{\eta_{s+2}}{s(s+1)}\right| s^{2}\left|f_{s}\right|+2\left|\xi_{2}\right|+\frac{3}{2}\left|\eta_{3}\right|,
\end{gathered}
$$

whence

$$
\begin{equation*}
\sum_{s=2}^{\infty}\left(1-\frac{3}{2} \frac{\left|\xi_{s+1}\right|}{s}-2 \frac{\left|\eta_{s+2}\right|}{s(s+1)}\right) s^{2}\left|f_{s}\right| \leq 2\left|\xi_{2}\right|+\frac{3}{2}\left|\eta_{3}\right| . \tag{15}
\end{equation*}
$$

Define ξ^{*} and η^{*} as above. The following theorem is true.
Theorem 2. Let $n \geq 3$ and $a_{n+1}^{(0)}+a_{n}^{(1)}=0$. If

$$
\begin{equation*}
\frac{3}{2} \xi^{*}+2\left|\xi_{2}\right|+2 \eta^{*}+\frac{3}{2}\left|\eta_{3}\right|<1 \tag{16}
\end{equation*}
$$

then entire solution (12) of differential equation (6) is convex in \mathbb{D}.
Proof. Indeed, (16) implies $1-3 \xi^{*} / 2-2 \eta^{*}>0$ and so from (15) we obtain the inequality

$$
\left(1-\frac{3}{2} \xi^{*}-2 \eta^{*}\right) \sum_{s=2}^{\infty} s^{2}\left|f_{s}\right| \leq 2\left|\xi_{2}\right|+\frac{3}{2}\left|\eta_{3}\right|,
$$

whence, in view of (16), $\sum_{s=2}^{\infty} s^{2}\left|f_{s}\right| \leq 1$, i.e. by Lemma 2 , the function f is convex in \mathbb{D}.
4. Growth of a solution. For investigation of the growth for a solution of the differential equation (6) we use Wiman-Valiron's method. Let $\mu_{f}(r)$ be the maximal term of series (12) and let $\nu_{f}(r)$ be its central index. Let ζ be a point on the circle $\{z:|z|=r\}$ such that $|f(\zeta)|=M_{f}(r)=\max \{|f(z)|:|z|=r\}$. Then [14, Ch. 1] the equality

$$
\begin{equation*}
f^{(j)}(\zeta)=\left(\frac{\nu_{f}(r)}{\zeta}\right)^{j} f(\zeta)\left(1+\delta_{j}(\zeta)\right), \quad j=1,2, \ldots \tag{17}
\end{equation*}
$$

where $\delta_{j}(\zeta)=O\left(\nu_{f}(r)^{-1 / 5}\right)$, holds as $r \rightarrow+\infty$ outside a set $E \subset[1,+\infty)$ of finite logarithmic measure, moreover this set E is contained in a union of intervals $\left[\sigma_{n-1}^{\prime}, \sigma_{n}\right)$ such that $\sigma_{n} / \sigma_{n-1}^{\prime} \rightarrow 1$ as $n \rightarrow \infty$ (see [14, Ch. 1]).

If f is a solution of differential equation (6) then in view of (17) we have the equality

$$
\begin{gather*}
\zeta^{n}\left(\frac{\nu_{f}(r)}{\zeta}\right)^{n}\left(1+\delta_{n}(\zeta)\right)+\left(a_{1}^{(n-1)} \zeta+a_{2}^{(n-1)}\right) \zeta^{n-1}\left(\frac{\nu_{f}(r)}{\zeta}\right)^{n-1}\left(1+\delta_{n-1}(\zeta)\right)+ \\
\quad+\sum_{k=0}^{n-2}\left(a_{n-1-k}^{(k)} \zeta^{2}+a_{n-k}^{(k)} \zeta+a_{n+1-k}^{(k)}\right) \zeta^{k}\left(\frac{\nu_{f}(r)}{\zeta}\right)^{k}\left(1+\delta_{k}(\zeta)\right)=0 \tag{18}
\end{gather*}
$$

which in general is an equation of n-th order for finding $\nu_{f}(r)$. It is clear that asymptotic behavior of $\nu_{f}(r)$ depends on vanishing of parameters $a_{k}^{(j)}$.

The following theorem is true.
Theorem 3. Let $n \geq 3$ and $\left|a_{1}^{(n-1)}\right|+\left|a_{1}^{(n-2)}\right|>0$. Then a transcendental solution (12) of differential equation (6) has regular growth and

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\ln M_{f}(r)}{r}=\gamma \tag{19}
\end{equation*}
$$

where either $\gamma=\left|\gamma_{1}\right|$ or $\gamma=\left|\gamma_{2}\right|$, and

$$
\gamma_{1}=\frac{-a_{1}^{(n-1)}+\sqrt{\left(a_{1}^{(n-1)}\right)^{2}-4 a_{1}^{(n-2)}}}{2}, \quad \gamma_{2}=\frac{-a_{1}^{(n-1)}-\sqrt{\left(a_{1}^{(n-1)}\right)^{2}-4 a_{1}^{(n-2)}}}{2} .
$$

Proof. Firstly, suppose that $a_{1}^{(n-1)} \neq 0$ and $a_{1}^{(n-2)} \neq 0$. Then formula (18) yields

$$
\begin{gathered}
\zeta^{n}\left(\frac{\nu_{f}(r)}{\zeta}\right)^{n}(1+o(1))+a_{1}^{(n-1)} \zeta^{n}\left(\frac{\nu_{f}(r)}{\zeta}\right)^{n-1}(1+o(1))+ \\
+a_{1}^{(n-2)} \zeta^{n}\left(\frac{\nu_{f}(r)}{\zeta}\right)^{n-2}(1+o(1))+O\left(\zeta^{2} \nu_{f}^{n-3}(r)\right)=0, \quad r \rightarrow+\infty, r \notin E
\end{gathered}
$$

that is

$$
\left(\frac{\nu_{f}(r)}{\zeta}\right)^{2}+(1+o(1)) a_{1}^{(n-1)} \frac{\nu_{f}(r)}{\zeta}+(1+o(1)) a_{1}^{(n-2)}=0, \quad r \rightarrow+\infty, r \notin E
$$

whence it follows that either $\nu_{f}(r)=-(1+o(1)) \gamma_{1} \zeta$ or $\nu_{f}(r)=-(1+o(1)) \gamma_{2} \zeta$ as $r \rightarrow+\infty$ and $r \notin E$.

If $a_{1}^{(n-2)}=0$, then from (18) likewise we obtain that $\nu_{f}(r) / \zeta+(1+o(1)) a_{1}^{(n-1)}=0$ i.e. $\nu_{f}(r)=-(1+o(1)) a_{1}^{(n-1)} \zeta$ as $r \rightarrow+\infty, r \notin E$. Finally, if $a_{1}^{(n-1)}=0$, then (18) implies that $\left(\nu_{f}(r) / \zeta\right)^{2}+(1+o(1)) a_{1}^{(n-2)}=0$, i.e. either $\nu_{f}(r)=(1+o(1)) \sqrt{-a_{1}^{(n-2)}} \zeta$ or $\nu_{f}(r)=$ $-(1+o(1)) \sqrt{-a_{1}^{(n-2)}} \zeta$ as $r \rightarrow+\infty, r \notin E$.

So, in all three cases $\nu_{f}(r)=(1+o(1)) \gamma r$ as $r \rightarrow+\infty, r \notin E$, where either $\gamma=\left|\gamma_{1}\right|$ or $\gamma=\left|\gamma_{2}\right|$.

If $r \in E$ i.e. $r \in\left[\sigma_{n-1}^{\prime}, \sigma_{n}\right)$ for some $n \in \mathbb{N}$ then

$$
\begin{gathered}
\nu_{f}(r) \geq \nu_{f}\left(\sigma_{n-1}^{\prime}\right)=(1+o(1)) \gamma \sigma_{n-1}^{\prime}=(1+o(1)) \gamma \frac{\sigma_{n-1}^{\prime}}{\sigma_{n}} \sigma_{n}= \\
=(1+o(1)) \gamma \sigma_{n} \geq(1+o(1)) \gamma r, \quad r \rightarrow+\infty,
\end{gathered}
$$

and

$$
\begin{aligned}
\nu_{f}(r) & \leq \nu_{f}\left(\sigma_{n}\right)=(1+o(1)) \gamma \sigma_{n}=(1+o(1)) \gamma \frac{\sigma_{n}}{\sigma_{n-1}^{\prime}} \sigma_{n-1}^{\prime}= \\
& =(1+o(1)) \gamma \sigma_{n-1}^{\prime} \leq(1+o(1)) \gamma r, \quad r \rightarrow+\infty,
\end{aligned}
$$

that is $\nu_{f}(r)=(1+o(1)) \gamma r$ as $r \rightarrow+\infty$. Therefore,

$$
\ln \mu_{f}(r)=\ln \mu_{f}(1)+\int_{1}^{r} \frac{\nu_{f}(t)}{t} d t=(1+o(1)) \gamma r, \quad r \rightarrow+\infty,
$$

and by Borel' theorem $\ln M_{f}(r)=(1+o(1)) \ln \mu_{f}(r)=(1+o(1)) \gamma r$ as $r \rightarrow+\infty$.
5. The main theorem. Using Theorems 1-3 we prove the following theorem.

Theorem 4. Let $a_{n+1}^{(0)}=a_{n}^{(1)}=0, a_{n-1}^{(2)}>0$ and $a_{n+1-k}^{(k)} \geq 0$ for $k=\overline{3, n},\left|a_{n-k}^{(k)}\right| \leq \varkappa a_{n-k}^{(k+1)}$ for $k=\overline{0, n-1}$ and $\left|a_{n-1-k}^{(k)}\right| \leq \varkappa a_{n-1-k}^{(k+2)}$ for $k=\overline{0, n-2}$, where $\varkappa \equiv$ const >0. Then differential equation (6) has an entire solution (12) such that:

1) if $\varkappa<6 / 13$ then f is close-to-convex in \mathbb{D};
2) if $\varkappa<12 / 55$ then f is convex in \mathbb{D};
3) if $\left|a_{1}^{(n-1)}\right|+\left|a_{1}^{(n-2)}\right|>0$ then equality (19) holds.

Proof. Since $a_{n+1}^{(0)}=a_{n}^{(1)}=0, a_{n-1}^{(2)}>0$ and $a_{n+1-k}^{(k)} \geq 0$ for $k=\overline{3, n}$ we obtain for all $s \geq 2$

$$
B_{s}=\sum_{k=0}^{\min \{s, n\}} \frac{a_{n+1-k}^{(k)}}{(s-k)!}>0
$$

In view of (10) and (11) for $s \geq 2$ we have

$$
\left|\xi_{s}\right| \leq \frac{\sum_{k=0}^{\min \{s, n\}-1} \frac{\left|a_{n-k}^{(k)}\right|}{(s-k-1)!}}{\frac{a_{n+1}^{(0)}}{s!}+\sum_{k=1}^{\min \{s, n\}} \frac{a_{n+1-k}^{(k)}}{(s-k)!}}=\frac{\sum_{k=0}^{\min \{s, n\}-1} \frac{\left|a_{n-k}^{(k)}\right|}{(s-k-1)!}}{\sum_{k=0}^{\min \{s, n\}-1} \frac{a_{n-k}^{(k+1)}}{(s-k-1)!}} \leq \varkappa
$$

and

$$
\left|\eta_{s}\right| \leq \frac{\sum_{k=0}^{\min \{s, n\}-2} \frac{\left|a_{n-1-k}^{(k)}\right|}{(s-k-2)!}}{\frac{a_{n+1}^{(0)}}{s!}+\frac{a_{n}^{(1)}}{(s-1)!}+\sum_{k=2}^{\min \{s, n\}} \frac{a_{n+1-k}^{(k)}}{(s-k)!}}=\frac{\sum_{k=0}^{\min \{s, n\}-2} \frac{\left|a_{n-1-k}^{(k)}\right|}{(s-k-2)!}}{\sum_{k=0}^{\min \{s, n\}-2} \frac{a_{n-1-k}^{(k+2)}}{(s-k-2)!}} \leq \varkappa,
$$

that is $\xi^{*} \leq \varkappa / 2, \eta^{*} \leq \varkappa / 6$ and since $\xi_{2} \leq \varkappa$ and $\eta_{3} / 2 \leq \varkappa / 2$ we have $\xi^{*}+\left|\xi_{2}\right|+\eta^{*}+\left|\eta_{3} / 2\right| \leq$ $13 \varkappa / 6<1$ provided $\varkappa<6 / 13$. Therefore, by Theorem 1, claim 1) of Theorem 4 is true. Likewise from Theorem 2 we obtain claim 2), and Theorem 3 implies claim 3).

Since equality $a_{n+1}^{(0)}+a_{n}^{(1)}=0$ is one of the conditions of Theorems $1-2$ we get

$$
B_{s}=\frac{a_{n}^{(1)}}{(s-1)!} \frac{s-1}{s}+\sum_{k=2}^{\min \{s, n\}} \frac{a_{n+1-k}^{(k)}}{(s-k)!},
$$

and if $a_{n}^{(1)}>0$ and $a_{n+1-k}^{(k)} \geq 0$ for $k=\overline{2, n}$ then $B_{s} \geq \frac{1}{2} \frac{a_{n}^{(1)}}{(s-1)!}+\sum_{k=2}^{\min \{s, n\}} \frac{a_{n+1-k}^{(k)}}{(s-k)!}$. Therefore, the conclusion of Theorem 4 remains true if $a_{n+1}^{(0)}+a_{n}^{(1)}=0, a_{n}^{(1)}>0, a_{n-1}^{(2)}>0$ and $a_{n+1-k}^{(k)} \geq 0$ for $k=\overline{3, n},\left|a_{n}^{(0)}\right| \leq \varkappa a_{n}^{(1)} / 2,\left|a_{n-k}^{(k)}\right| \leq \varkappa a_{n-k}^{(k+1)}$ for $k=\overline{1, n-1}$ and $\left|a_{n-1-k}^{(k)}\right| \leq \varkappa a_{n-1-k}^{(k+2)}$ for $k=\overline{0, n-2}$.

The author expresses his sincere thanks to Prof. M. M. Sheremeta for the attentive guidance.

REFERENCES

1. Graham I., Kohr G. Geometric function theory in one and higher dimensions. - New York; Basel: Marcel Dekker, Inc., 2003. - 526p.
2. Shah S.M. Univalence of a function f and its successive derivatives when f satisfies a differential equation// J. Math. Anal. and Appl. - 1988. - V.133. - P. 79-92.
3. Shah S.M. Univalence of a function f and its successive derivatives when f satisfies a differential equation, II// J. Math. Anal. and Appl. - 1989. - V.142. - P. 422-430.
4. Sheremeta Z.M. Close-to-convexity of an entire solution of a differential equation// Mathematical Methods and Physicomechanical Fields - 1999. - V.42, №3. - P. 31-35. (in Ukrainian)
5. Sheremeta Z.M. On the properties of entire solutions of one differential equation// Differ. Uravn. - 2000. - V.36, №8. - P. 1045-1050. (in Russian), English transl. in Differ. Equ. V.36, №8, 1155-1161.
6. Sheremeta Z.M. On entire solutions of a differential equation// Mat. Stud. - 2000. - V.14, №1. P. 54-58.
7. Sheremeta Z.M. On the close-to-convexity of entire solutions of a differential equation// Visn. L'viv Univ. Ser. Mekh.-Math. - 2000. - V.58. - P. 54-56. (in Ukrainian)
8. Sheremeta Z.M., Sheremeta M.M. Close-to-convexity for entire solutions of one differential equation// Differ. Uravn. - 2002. - V.38, №4. - P. 477-481. (in Russian)
9. Mahola Ya.S., Sheremeta M.M. Properties of entire solutions of a linear differential equation of n-th order with polynomial coefficients of n-th degree// Mat. Stud. - 2008. - V.30, №2. - P. 153-162.
10. Mahola Ya.S., Sheremeta M.M. Close-to-convexity of entire solution of a linear differential equation with polynomial coefficients// Visn. L'viv Univ. Ser. Mekh.-Math. - 2009. - V.70. - P. 122-127. (in Ukrainian)
11. Mahola Ya.S., Sheremeta M.M. On properties of entire solutions of linear differential equations with polynomial coefficients// Mathematical Methods and Physicomechanical Fields. - 2010. - V.53, №4. P. 62-74. (in Ukrainian)
12. Goodman A.W. Univalent function and nonanalytic curves// Proc. Amer. Math. Soc. - 1957. - V.8. P. 598-601.
13. Sheremeta Z.M., Sheremeta M.M. Convexity of entire solutions of one differential equation// Mathematical Methods and Physicomechanical Fields. - 2004. - V.47, №2. - P. 186-191. (in Ukrainian)
14. Wittich H. Neuere Untersuchungen über eindeutige analytische Funktionen. - Berlin.: Springer, 1955 164 p.

Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, mahola@ukr.net

