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It is proved that the differential equation

n—2
2™ 4+ (0" 2 + ol D) (D 4 Z @, 22 +a®, 2+ afﬁ)lfk)zkw(k) =0
k=0

has an entire solution f with a two-member recurrent formula for its Taylor’s coefficients. The
growth of such function f is studied. The conditions for coefficients al(f ) are obtained, under
which the solution f is convex or close-to-convex in D = {z : |z| < 1}.
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T.36, Ne2. — C.133-141.

HokazaHo, uro nuddepeHmaibHOe YpaBHEHTE

n—2
an(n) + (agn—l)z + aén—l))zn—l,w(n—l) + Z (a;k_)l_k-z2 + aglk_)kz + ag:zl_k)zkw(k) =0
k=0

UMeeT IeJI0e pelenne f ¢ IBYXWIEHHOH PeKypPPeHTHOM (hOpMYIIOit st TeifjIopoBCKuX KO3 hu-
nuerToB. V3yden poct takoit dyHKmu f. YKa3aHbl yCJIOBUS HA TAPAMETPHI a,(cj ), [IPA BBITIOJI-

HEHUM KOTOPBIX TaKOE PelleHne [ sBJAETCs BBILYKJIOH min 6yiu3Koil K Bbinyksoil B D = {z :
|z| < 1} dynkuueii.

1. Introduction. A function

f(Z) = Z fnzn (1)

analytic and univalent in D = {z: |z| < 1} is said to be convex if f(D) is a convex domain. It
is well known [1, p. 38|, that the condition Re{1+2f"(z)/f'(z)} > 0 (z € D) is necessary and
sufficient for convexity of f in . A function f is said to be close-to-convex in D [1, p. 64] if
there exists a function ® convex in D such that Re{f'(z)/®'(z)} > 0 (z € D). Every function
close-to-convex in D is univalent in D [1, p. 64] and f; # 0. A function f close-to-convex
in D has the characteristic property that the complement G of f(ID) can be filled with rays
L which go from 0f(D) and lie in G [1, p. 71]. Since f; # 0, it follows that the function (1) is
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close-to-convex in I if and only if the function f(z) = z+32°°, (f,/f1)2" is close-to-convex
in D.
S. M. Shah [2, 3| studied properties of entire solutions of the differential equation

2w+ (022 + a2 w' + (0”22 + a2 + o )w = 0. (2)

In particular, he obtained [3] the conditions under which entire solutions with a one-member
recurrent formula for Taylor’s coefficients of differential equation (2) is a function close-to-
convex in .

The general case of a two-member recurrent formula in a number of papers is investigated

by Z. M. Sheremeta [4-7] and M. M. Sheremeta with Z. M. Sheremeta [8]. Particularly, in
the case when the parameters a,(j ) are complex, they have obtained the following result.

Theorem A. Let a$ + aéo) =0, a8 < 2 and

1 0 0 1 0 0
lat"| +]ay”| 3la\"| 6lal"| + 3ay”| 2|0\

< 1.
1 1 1 1
2—1ay’] 2B —a"]) 4B —la"]) 34— a])

Then differential equation (2) has an entire solution f(z) = z+ ) ., fsz° which is a function
close-to-convex in D and In M (r) = (14 o(1))or, r — oo, where either

o=0y:==|-ad" +/(a{")? - 4a\"],

1
2
or

1 1 0
—ay” =/ (@i")? — 40"

1
0202:25

The straightforward generalization of Shah’s equation is the differential equation

n J+1
an(n) + Z (Z a](cnj)znk+l> w(nfj) = 0. (3)
k=1

Jj=1

The following theorem is proved in [9].

Theorem B. A function (1) analytic at the origin is a solution of differential equation (3)
if and only if for each s € Z ..

min{s,n} min{s,n}—m

s—m)!
Z:o % afm@-l—k—mﬁfs—m =0, (4)

where ol = 1.

In the case when formula (4) reduces to a one-member recurrent formula for two nei-
ghboring coefficients f, in |9, 10| it is investigated convexity, close-to-convexity in I and
possible growth of a function f. In [11] it is studied the case of two non-neighboring coeffici-
ents f,. Here we consider the conditions under which the function f has the same properties
in the case when formula (4) reduces to a two-member recurrent formula for neighboring
coeflicients. Further we assume that n > 3.
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We may rewrite differential equation (3) in the form

n n—

3

DD ah g e =0, (5)
m=0 k=0
Let anll wom = 0 for m =3 n and k = 0,n — m. Then differential equation (5) takes the
following form
n n—1 n—2
Z kzkw(k + ank_kzkﬂw(k) + ank_l_kzk+2w(k) 0,
k=0 k=0 k=0
that is
n—2
(n)+( (n— 1)z+a§n_1))z”_1w(”_1) + (a glk)l L2 +a7(l)kz—|—agf21 k,)zkw(k) 0. (6)
k=0

Proposition 1. Let n > 3. A function (1) analytic at the origin is a solution of differential
equation (6) if and only if

”+1f0 =0, <a7(10-i)-1 +a)fi+aPfy =0 (7)
and for all s > 2
min{s,n} min{s,n}—1
(k) w  (s—1)!
o fs 7y -1
; o k( ) ; k(S—k:—l)!

min{s,n}—2

_ |
+ Z a,_ 1 k S k3)2)|fs—2 :O, (8)

where ol = 1.

Indeed, if s =0 and s = 1 then from (4) we obtain (7). On the other hand, if s > 2 then
from (4) in view of an+1 wm =0 for m =3,n and k = 0,n — m we obtain (8).
Assuming that for all s > 2

min{s,n} " sl
> 1k (5 )l 70
k=0

we may rewrite recurrent formula (8) in the form

min{s,n}—1 k min{s,n}—2 k
aa(%)k Z aa(%)kk
5—k—1) 5-k—2)
o= — k=0 B k=0 f

s min{s,n} (k) s—1 min{s,n} (k) i

an+1,k 1 an+17k

> (s —k)! s(s=1) D (s — k)

k=0 k=0

that is

f szs 1+ )nsfs 2 S Z 27 (9>

1
s(s —
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where
min%}l agi)k
=~ (s—k—1)
58 - min{s,n} (k) , $2 2’ (1())
Z Upt1—k
—~ (s—k)
min{s,n}—2 k
Z a1(1—)1—k
~  (s—k—2)

min{s,n} (k
Z anllfk
(s —k)!

k=0

2. Close-to-convexity of a solution. For the investigation of the close-to-convexity for
a solution of differential equation (6) we use following lemma [8, 12].

Lemma 1. If Y s|f,| <1, then the function
s=2

2) =2+ Z fi2t (12)

is close-to-convex in D.

In view of this lemma, we search for a solution of differential equation (6) in the form

of (12). Suppose that afﬂl +aiY = 0. Choosing fy = 0 and f; = 1, condition (7) holds. For
s > 2 from recurrent formula (9) we obtain

€s

oo o0

> oslfl=)s

s=2 s=2 (

=16+ D6 S|+ Il + \%fl

:|§2|+Z|§5+1f5|+ ‘—f-z‘ 7754—2
s=2

whence

fs 1+ f52

~ Z |§sfs—1| +Z ‘871911;_2
s=2
s .
+Z'S_1fsz

Ns+2
Z ‘s<s 0’

s|S

+lel+| 2

Z <1_ |€s+1| . |775+2| ) ‘fs’ < |£2’ + 773) (13)

gy s s(s+1)

Now we put £ = max {'59—;1‘, 5> 2}, 7" = max {i?;jjl), 5> 2} The following theorem

is true.

Theorem 1. Let n > 3 and aifil + aq(zl) =0.If
& +lel+n+ |2 <1, (14)

then entire solution (12) of differential equation (6) is close-to-convex in D).
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Proof. Indeed, (14) implies 1 — £* — n* > 0 and so from (13) we obtain the inequality

o

- —m Y slhl<lel+ |2,

s=2

whence in view of (14), Y2, s|fs| < 1, i.e. by Lemma 1 the function f is close-to-convex
in D. [

3. Convexity of a solution. For investigation of the convexity of a solution of differential
equation (6), as in [13], we use following lemma [12].

Lemma 2. If Y s*|f,| <1, then the function (12) is convex in D.
5=2

In view of this lemma we again search for a solution of differential equation (6) in the

form of (12). Suppose that agl +a) = 0. Choosing f; = 0 and f; = 1, condition (7) holds.
For s > 2 from recurrent formula (9) we obtain

Z ‘f8’<z ‘gsfs 1‘—'_2

s=2

= 2|61 +ZS|€J5-1| + 2o +3\%f1] +3

s
1 fs—2

1fs—2

Ns
—2\52\+Zs+ )€ ful + 2 ynguzsm‘ +2

+1°°
s+1 55 1 S+ 2| Nsp2
:2|§2| Z s Ras |fs|+ |773|+Z (S——::l) 82|fs| <
s=2
3 & Ms
<y 3on), rmZ] 21 2l +
s=2
whence
. 3 ’§S+1| |775+2|
-2 —9 <2 15
> (13l o ) st < 2lel + Sl (15)

Define £* and n* as above. The following theorem is true.

Theorem 2. Let n > 3 and af?ll +a) =0 If

—f +2|&| + 20" + = ’773|<1 (16)

then entire solution (12) of differential equation ( 6) is convex in D.

Proof. Indeed, (16) implies 1 — 3£*/2 — 2n* > 0 and so from (15) we obtain the inequality

(1—;5*-2#")2 |fs|<2|§2|+ 3,

s=2

whence, in view of (16), Z s*|fs| <1, ie. by Lemma 2, the function f is convex in D. [
5=2
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4. Growth of a solution. For investigation of the growth for a solution of the differential
equation (6) we use Wiman-Valiron’s method. Let p/(r) be the maximal term of series (12)
and let v(r) be its central index. Let ¢ be a point on the circle {z: |z| = r} such that
|f(O)] = Ms(r) = max{|f(2)|: |z] = r}. Then [14, Ch. 1] the equality

¢

where §;(¢) = O (v4(r)""/?), holds as r — +oo outside a set E C [1,+00) of finite logari-
thmic measure, moreover this set F is contained in a union of intervals [0, ;,0,) such that
on/ol_1 — 1 asn — oo (see [14, Ch. 1]).

If f is a solution of differential equation (6) then in view of (17) we have the equality

e (M) (g e + (s ) oot () s

n—2 k
3 (e el ¢ (U s aiey —o (18)
k=0

F9(0) = (ﬁ) FOU+6,0). j=1.2... a7

which in general is an equation of n-th order for finding v;(r). It is clear that asymptotic
behavior of v¢(r) depends on vanishing of parameters a,(j ),
The following theorem is true.

Theorem 3. Let n > 3 and |a\" V| + |a{"™®| > 0. Then a transcendental solution (12) of
differential equation (6) has regular growth and

In M

r—+00 T
where either vy = |y1| or v = |y2|, and

2 2
_agn1)+\/<agn1)) _4a§n72) _a§n1)_\/<a§n1)) _4a§n72)

N = 9 VS 9

Proof. Firstly, suppose that a!"™" # 0 and a\"® # 0. Then formula (18) yields

¢ <”f—(”)n (14 0(1)) +al" V¢ <”f—(r))n_1 (1+o0(1))+

1§ ¢
n—2
Lalm e (Vf_é”) (1+0(1) + 0 (¢v;>(r)) =0, 7= +oo,r ¢ E,

that is

(va(r)> + (14 o(1))af" ™" Vfér) +(1+0(1))a" P =0, r— +oo,r¢E,

whence it follows that either vy(r) = —(1 4 0(1))71¢ or v¢(r) = —(1 + 0o(1))1( as r — 400
and r € E.
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If a§”‘2) = 0, then from (18) likewise we obtain that v(r)/¢ + (1 + o(1))ay ("D — 0 je.
vi(r) = —(1 + 0(1))a§"71)c as r — +oo,r € E. Finally, if "™ = 0, then (18) implies

that (v;(r)/¢)? + (14 o(1))al"™ = 0, i.e. either v¢(r) = (1 + o(1))\/—a""?¢ or v(r) =

—(1+0(1)) —ai”*”g“ as r — +oo,r € E.
So, in all three cases v(r) = (1 + o(1))yr as r — 4o00,r € E, where either v = |y,| or

v = |72l

Ifre Eie re€lo),_,,0,) for some n € N then

On-1,0

() 2 04(0 ) = (L 013, = (14 o)y Pt =

n

=(1+o(1))yo, > (1 +0(1))yr, 7 — 400,

and

vi(r) < vi(on) = (14 o(1))yon = (1+ o(1)y "ol ; =

n—1
= (1 +o(1)yo, < (L+o(1))yr, 1= +o0,
that is v¢(r) = (1 + o(1))yr as r — +o00. Therefore,

r

In pf(r) =1n pp(l) + / VfT(t)dt =(1+o0(1))yr, r— o0,

1

and by Borel” theorem In M;(r) = (14 0(1))In ps(r) = (1 + o(1))yr as r — +o0. O
5. The main theorem. Using Theorems 1-3 we prove the following theorem.
Theorem 4. Let aﬁf’jl = a;) =0, a(2)1 > 0 and a' +1 . >0 for k= 3,n, ]a < %a(k+kl)

for k = 0,n —1 and |a Tl < %ak+2 for k = 0,n — 2, where » = const > 0. Then
differential equation (6) has an entire so]umon (12) such that:

1) if 52 < 6/13 then f is close-to-convex in ;
2) if 52 < 12/55 then f is convex in D;
3) if |a" V| +1a\""?| > 0 then equality (19) holds.

Proof. Since al, = al) =0, a!”, > 0 and affil_k > 0 for k = 3,n we obtain for all s > 2

min{s,n} a(k)
B, = ik .
Z (s —k)!
k=0
In view of (10) and (11) for s > 2 we have

min{s,n}—1 min{s,n}—1

k k
Z \afl_)k’ Z ‘afz—)k’
= k- = k-
&l < = —
‘ = (0) min{s,n} k) min{s,n}—1 a(k—‘rl)

s‘ -t Z Z (s—nkjk—l)!
k=1 k=0

< x
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and
min{s,n}—2 |a(k)1 . min{s,n}—2 |a(k)1 .
Z (s —k—2)! Z (s —k—2)!
|775| < k=0 _ k=0 7
> a(o)l a(l) min{s,n} &(k)l . min{s,n}—2 a(kﬁ2)k =
n+ n n+1— n—1—
s! +(s—1)!+ kZ:; (s —k)! kz:% (s —k—2)!

that is & < /2, n* < 5¢/6 and since & < s and 13/2 < 3/2 we have £ +|&| +n* +|n3/2] <
135¢/6 < 1 provided s < 6/13. Therefore, by Theorem 1, claim 1) of Theorem 4 is true.
Likewise from Theorem 2 we obtain claim 2), and Theorem 3 implies claim 3). [

(0)

Since equality a,; + at!

= 0 is one of the conditions of Theorems 1-2 we get

1 min{s,n} k
B — U/'EL) 5—1+ Z ail1-k

(s—1)! s (s — k)
and if @i > 0 and ™), , > 0 for k = 2,n then B, > 1 ) mm{zs " b1 . Therefore, the
n n+l—k o = 2(s—1)! (s—k)!

conclusion of Theorem 4 remains true if afg)_l +a) = 0, ay) > 0 ag)l > 0 and a 1 >0

for k =3,n, |a| < %an)/Q |a L < s (k+)fork— I,n—1 and |an ] < e 7(1_+12_)k for
k=0,n—2.

The author expresses his sincere thanks to Prof. M. M. Sheremeta for the attentive
guidance.
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